

TransducerM 系列航姿传感器

TM300 TM200 无人车适用

提高导航精度、增强可靠性、降低成本

DDTM-LL003 Ver. 1.2 (ZH)

TransducerM TM300 和 TM200 系列传感器可以测量无人车 (AGV) 和 机器人底盘的运动,提供惯性定位参考,提升定位 精度和可靠性。

将一个传感器安装于移动底盘上,以精确实时测量车辆航向和倾斜程度,借助行车电脑的其它信息,进而推算出底盘的空间位置——TransducerM系列传感器使得惯性定位更加准确,并与例如激光雷达或者二维码导航形成互补,增强在狭窄空间内的定位精度,并减少对外界参考物体的依赖。

该系列传感器分为 TM300 和 TM200 两个版本,适用于对精度和环境耐受性要求不同的场合。产品采用低电压设计,CAN总线或串口,最高达防水等级IP67,结合业界领先的数据处理算法,可直接输出角度数据。

产品特点

- 适配良好的情况下,可有效降低AGV整机成本
- 提升航向角测量精度、漂移抑制
- 实时测量、耐振动
- 抵抗强磁强干扰

关于 SYD Dynamics ApS 公司

TransducerM 系列传感器由 SYD Dynamics ApS 设计并制造。

SYD Dynamics 是一家坐落于北欧丹麦的技术型公司,致力于为用户提供 敏捷可靠的姿态传感和定位技术解决方案,力助自主导航、机器人产品和 工程器械测量的规模化应用。

通过业内领先的数据处理和滤波技术, SYD Dynamics 的产品能够提供高性能的3D姿态和运动信息, 相关方案被应用于移动机器人、工程车辆、无人农业车辆、无人水下航行器、平台稳定等诸多应用中。SYD Dynamics 的产品在使用和界面上注重用户体验, 产品软件接口提供易于移植的通讯接口库, 极大地缩短用户研发时间。

经济型

SYD Dynamics ApS

Forskerparken 10

5230 Odense M

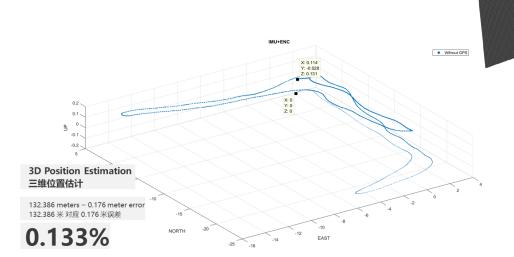
Denmark

Web: www.syd-dynamics.com

Email: info@syd-dynamics.com

CVR. 36948752

*有关本材料提供信息,请详询并以技术支持和最终产品为准



TransducerM TM300系列全功能型号

TransducerM 配有图形化配置软件 和C/C++源码级通讯库与示例程序

TransducerM 系列姿态传感器为SYD Dynamics推出的标准化惯性传感模组。该传感器 用于感知被测物体在空间中的姿态。 典型的输出包括俯仰角、滚转角、航向角、重 力矢量以及三个坐标轴上的加速度和角速度。 该传感器模块采用微电子机械系统采 集原始数据,通过特殊的数据融合优化算法,具有高灵敏度(0.01度分辨率),抗干扰 能力强(耐8g振动), 高实时性的特点。产品同时针对不同应用场景进行优化, 非常适 合投入到具有可靠性要求和量产成本约束的机器人应用中。

TransducerM TM300系列产品,结合车辆里程计,可以达到千分之二及以内误差的三维惯性定 位精度。上图为示例室内工况良好情况下,误差率更低达0.133%

TransducerM TM300 系列产品部分产品特性

参数	А	長小	典型		最大		单位	
算法迭代速率	3	300		360		430		
数据输出速率 (取决于配置)	实例	实例				T: 921600 bps 型: 滚转,俯仰,航向 与 四元素		
		数据输出	数据输出速率		300			
数据输出格式	滚转/俯仰	滚转/俯仰/航向、四元素、重力场向量、标 速度, 码						
		特性名称			备注			
其他特性		自适应滤波			提升航向角精度			
		传感器组网			支持多传感器 CAN 总线通讯 ¹			
性能	ROLL 滚料	<u>t</u>	PITCH 俯仰		YAW 航向			
分辨率	0.01°		0.01°		0.01°			
角度输出范围	0° - 360°		±90°		±180°			
静态误差	<0.5°		<0.5°		<1.0°	平均值 ²		
动态误差 (惯性)	<2.0°		<2.0°		<4.6°	平均值 2,3		
零偏重复性 (惯性)	<0.04°		< 0.04°		<0.28°	<0.28° 最大值 ² 恒定环境下重复		
位置漂移 (惯性)	< 0.09 °/h	1	< 0.09 °/h		1.05 °/h	静态条件2		
开机零偏	< 0.4°		< 0.4°		< 0.4°			

^{3.} 包括通信延迟所引起的误差。